Studies of Heterocyclic Compounds. Part 31. ${ }^{1}$ 4-Alkyl-5-alkylimino- Δ^{2}-1,2,4thiadiazolines: Synthesis and Cycloaddition Reactions with Nitriles in Attempts to Prepare 3a λ^{4}-Thia-1,3,4,6-tetraazapentalenes

Long-Li Lai, ${ }^{a}$ Tak-Ho Ngoi, ${ }^{a}$ David H. Reid, ${ }^{*, a}$ Robin H. Nicol ${ }^{b}$ and Jane B. Rhodes ${ }^{b}$
${ }^{\text {a }}$ Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand, Wits 2050,
Johannesburg, South Africa
${ }^{b}$ Department of Chemistry, The University, St. Andrews KY16 9ST, Scotland

Abstract

Several 4-alkyl-5-alkylimino- Δ^{2}-1,2,4-thiadiazolines have been synthesized from 1,2,4-thiadiazoles, namely 3,4-dimethyl-5-methylimino- Δ^{2}-1,2,4-thiadiazoline 9, 3 -methyl-6,7-dihydro- 5 H -1,2,4-thia-diazolo[4,5-a] pyrimidine 24, 6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a] pyrimidine 26, and 3-methyl-5,10-dihydrobenzo[e]-1,2,4-thiadiazolo[4,5-a][1,3]diazepine 34. Cycloaddition reactions of compounds 9, 24, 26 and 34 were carried out in order to synthesize $1 H, 6 H-3 a \lambda^{4}$-thia-1,3,4,6tetraazapentalenes 6, whose system is a hitherto unknown variation of the 1,6,6a λ^{4}-triheterapentalene structure. Compound 9 failed to react with nitriles and decomposed under forcing conditions. Compounds 24, 26 and 34 underwent cycloaddition with nitiriles, with elimination of acetonitrile from 24 and 34 and of hydrogen cyanide from 26, and incorporation of the nitrile into the product 4-alkyl-5-alkylimino- Δ^{2}-1,2,4-thiadiazoline. $1 \mathrm{H}, 6 \mathrm{H}-3 \mathrm{a} \lambda^{4}$-Thia-1,3,4,6-tetraazapentalenes 6 were not isolated or detected spectroscopically but it is proposed that they are intermediates in the cycloaddition of 4-alkyl5 -alkylimino- Δ^{2}-1,2,4-thiadiazolines with nitriles. The heterocyclic system 34 is a new one.

$1,6,6 \mathrm{a} \lambda^{4}$-Triheterapentalenes and their aza analogues comprise a large number of systems based on structure 1 , in which $Y=S$, Se or Te and X and Z are O, S, Se or NR. The essential structural feature in compounds 1 is the heteroatom unit 2 which employs four-electron three-centre bonding. In a previous paper ${ }^{2}$ we formulated possible variations of the triheterapentalene structure which contain the structural element 3 or 4. Attempts to synthesize compounds 5 which contain the unit $3(X=Y=S, Z=N)$ gave instead 5-thioacylmethylene- Δ^{2}-1,2,4-thiadiazolines, showing that the triheterapentalene structure 5 is energetically disfavoured relative to the monocyclic 5-thioacylmethylene- Δ^{2}-1,2,4-thiadiazoline structure. The aim of the work described in this paper was to synthesize and study the structure of the hitherto unknown $1 H, 6 H-3 a \lambda^{4}$-thia-1 ,3,4,6-tetraazapentalenes 6 , which contain the unit $4(X=Z=N, Y=S)$.

Results and Discussion

Synthesis of 4-Alkyl-5-alkylimino- Δ^{2}-1,2,4-thiadiazolines.Our synthetic objective was to prepare 4-alkyl-5-alkylimino- Δ^{2} -1,2,4-thiadiazolines 7 for the purpose of carrying out cycloaddition with nitriles $\mathrm{R}^{4} \mathrm{CN}$ to give the triheterapentalenes 6. Attempts to obtain the methylimine 9 by methylation of the imine $8^{3,4}$ with iodomethane or methyl fluorosulfonate were unsatisfactory since mixtures of salts were obtained which, when deprotonated, gave mixtures of bases. The methylimine 9 was eventually obtained by successive methylation of 5 -chloro-3-methyl-1,2,4-thiadiazole 11^{5} with methyl fluorosulfonate and treatment of the resulting salt 16 with ethanolic methylamine. The structure of the methylimine 9 was established indirectly by an X-ray single-crystal structure determination ${ }^{6}$ of the corresponding hydrochloride 17.

In order to obtain other 4-alkyl-5-alkylimino- $\Delta^{2}-1,2,4$ thiadiazolines 7, 5-amino-3-methyl-1,2,4-thiadiazole 12 was allowed to react with 1,3-dibromopropane in hot dimethylformamide (DMF) in the expectation that alkylation would take place exclusively at position 4 to give the intermediate bromide 19, analogously to the methylation ${ }^{3}$ of compound 12. Deprotonation of the bromide 19 and thermal cyclisation of the resulting

7

$11 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Cl}$
$12 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{NH}_{2}$
$13 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{NHCHO}$
$14 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{NH}_{2}$
$15 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{NH}_{2}$

16

2

$8 R^{1}=M e, R^{2}=H$
$9 R^{1}=R^{2}=M e$
$10 \mathrm{R}^{1}=\left[\mathrm{CH}_{2}\right]_{3} \mathrm{Br}, \mathrm{R}^{2}=\mathrm{H}$

$17 \mathrm{X}=\mathrm{Cl}$
$18 \mathrm{X}=\mathrm{ClO}_{4}$
imine 10 would give the pyrimidinium bromide 20 . In the event the salt 20 was produced directly, but in modest yield (24%), and on being deprotonated afforded the 1,2,4-thiadiazolo[4,5a]pyrimidine 24. The reaction also gave the formamide 13 as the main reaction product (37%) together with dimethylammonium bromide (21%). The formamide 13 and the dimethylammonium bromide arise by condensation of the thiadiazole 12 with the solvent followed by solvolysis involving HBr and water. The use of the less reactive aprotic solvents N-methylpyrrolidinone and 1,3-dimethyl-1,3-propyleneurea (DMPU) in place of DMF raised the yield of the base 24 to $\sim 35 \%$.

19

$20 \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Br}$
$21 R=\mathrm{Ph}, \mathrm{X}=\mathrm{Br}$
$22 R=H, X=B r$
$23 R=\mathrm{Me}, \mathrm{X}=\mathrm{PhC}=\mathrm{CHCN}$

$24 \mathrm{R}=\mathrm{Me}$
$25 \mathrm{R}=\mathrm{Ph}$
$26 \mathrm{R}=\mathrm{H}$
$27 \mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
$28 \mathrm{R}=4-\mathrm{Pyridyd}_{4}$
$29 \mathrm{R}=\mathrm{MeOCH}_{2}$
$30 \mathrm{R}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}$
$31 \mathrm{R}=\mathrm{CD}_{3}{ }_{3}$
$32 \mathrm{R}=\mathrm{CH}=\mathrm{CHCN}$

5-Amino-3-phenyl-1,2,4-thiadiazole 14 and 5-amino-1,2,4thiadiazole 15 also reacted with 1,3-dibromopropane in boiling DMF, giving the bromides 21 and 22 , respectively, which, when deprotonated, yielded the corresponding bases 25 and 26.
5-Amino-3-methyl-1,2,4-thiadiazole 12 also reacted with 1,2bis(bromomethyl)benzene in boiling DMF to give the diazepinium bromide 33 directly, together with much dimethylammonium bromide. Deprotonation of the bromide 33 afforded the diazepine 34 in 45% overall yield. The diazepine 34 is the first member of the benzo[e]-1,2,4-thiadiazolo[4,5$a][1,3]$ diazepine system to be reported and isolated. Compounds 24-26 and 34 are moderately strong bases [$\mathrm{p} \mathrm{K}_{\mathrm{a}}$ (5% EtOH-water): 24, 8.48; 25, 8.24; 34, 7.46].

Cycloaddition of the Pyrimidines 24 and 26 and the Diazepine 34 with Nitriles.-The reaction of the methyl base 24 with a series of nitriles was investigated. $1 H, 6 H-3 \mathrm{a} \lambda^{4}$-Thia-1,3,4,6tetraazapentalenes 6 have not been found in any of these reactions nor has their presence been detected by NMR spectroscopy. In the majority of reactions the overall process involved the incorporation of the reactant nitrile into the reaction product and concomitant elimination of acetonitrile from the reactant (Scheme 1). Thus the base 24 reacted with boiling benzonitrile to give the same compound 25 as had been obtained by the sequence $\mathbf{1 4} \boldsymbol{\rightarrow 2 1} \boldsymbol{\rightarrow 2 5}$. Reaction of the base 24 with 4 -nitrobenzonitrile, 4 -cyanopyridine and methoxy-

Scheme 1
acetonitrile gave the thiadiazolo[4,5-a]pyrimidines 27-29, respectively. The product from the reaction of the base 24 with 2-hydroxybenzonitrile in boiling toluene had a high melting point (228-229 ${ }^{\circ} \mathrm{C}$) and was sparingly soluble in polar organic solvents. Its IR spectrum displayed a broad band centred at $2550 \mathrm{~cm}^{-1}$. These properties suggest that the compound possesses the zwitterion structure 37 or an intermolecularly hydrogen-bonded structure held by $\mathrm{OH}--\mathrm{N}-8$ interactions. In solution it appears to exist in the neutral monomeric form $\mathbf{3 0}$. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ shows a CH_{2} triplet at δ 3.57, which is close to the range ($\delta 3.83-3.89$) in which the $5-\mathrm{H}_{2}$ triplets of compounds 25,27 and 28 occur. The $5-\mathrm{H}_{2}$ triplet of the zwitterion 37 would be expected to occur further downfield in the region in which the $5-\mathrm{H}_{2}$ signal of the salt 21 occurs (δ 4.12).

37

The methyl base 24 reacted with boiling trideuterioacetonitrile to give the trideuteriomethyl analogue 31 in high yield (84%). The base 31, when boiled in acetonitrile, gave back the methyl base $24(86 \%)$. The results of these experiments demonstrate the reversibility of the process (Scheme 1). Periodic examination of a solution of the base 24 in $\mathrm{CD}_{3} \mathrm{CN}$ $\left(\mathrm{CD}_{3} \mathrm{CN}: 24,38: 1\right)$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy showed that the base 24 reacts with $\mathrm{CD}_{3} \mathrm{CN}$ at a measurable rate at ambient temperature. Conversion of the base 24 into compound $\mathbf{3 1}$ was 50% complete after 6.5 days.

The methyl base 24 reacted slowly with fumaronitrile (1:2 ratio) in toluene at room temperature at both cyano groups to give the stable yellow ethene 38 (79% yield). With a larger excess of fumaronitrile ($1: 5$ ratio), the nitrile 32 was isolated (65%), together with the ethene 38 (11%). The nitrile 32 undergoes slow, continuous self-cycloaddition to give the ethene 38 along with polar decomposition products. It could not be freed entirely (TLC) from impurities for elemental analysis but was characterised by its ${ }^{1} \mathrm{H}$ NMR and mass spectra.

The base 24 failed to react with boiling pivalonitrile $\left(105^{\circ} \mathrm{C}\right)$. Reaction took place between the base 24 and benzoylacetonitrile but did not involve the cyano group. Instead an acid-base reaction occurred to give the ion-pair 23 which was insoluble in non-polar organic solvents. Its IR spectrum (KBr) did not show $\mathrm{C}=\mathrm{O}$ stretching absorption but instead showed a broad band at $2700-2400 \mathrm{~cm}^{-1}$ arising from $=\mathrm{NH}-$ and a strong band at 2150 cm^{-1} originating from the unit $-\mathrm{O}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{N} \leftrightarrow \mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}=$ $\mathrm{N}^{-}\left[c f . \mathrm{PhCOCH}_{2} \mathrm{CN}: v(\mathrm{C}=\mathrm{O}) 1690 \mathrm{~cm}^{-1} ; v(\mathrm{C}=\mathrm{N}) 2258 \mathrm{~cm}^{-1}\right]$. The ion-pair dissolved in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ to give a solution whose ${ }^{1} \mathrm{H}$ NMR spectrum showed that virtually complete reversion to the

Scheme 2
base 24 and benzoylacetonitrile had occurred. Boiling of a suspension of the ion-pair 23 in toluene did not give any useful product.

The base 26 reacted with nitriles in a similar manner to the base 24, with elimination of hydrogen cyanide. It reacted with boiling acetonitrile to give the methyl base 24 and with benzonitrile in boiling toluene to give the phenyl base 25.

The diazepine 34 reacted with nitriles less readily than did the bases 24 and 26. Reaction with boiling trideuterioacetonitrile occurred slowly, only 25% conversion into the deuteriated analogue 35 taking place after 26 h . Conversion of compound 34 into the trideuterio analogue 35 was achieved to a greater extent (77%) by reflux of a solution of the diazepine 34 in a mixture of $\mathrm{CD}_{3} \mathrm{CN}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. The diazepine 34 reacted readily with fumaronitrile in boiling toluene to give the nitrile 36. There was no evidence of reaction at both cyano groups of fumaronitrile. Heating of the diazepine 34 in boiling benzonitrile resulted in the disappearance of the diazepine but did not yield any identifiable product, while prolonged boiling of the diazepine 34 with benzonitrile in toluene or benzene led to the recovery of starting material.

In contrast to the successful cycloadditions of the bases 24,26 and 34 with nitriles, the methylimine 9 failed to react with boiling trideuterioacetonitrile or with benzonitrile in boiling toluene and was recovered in high yield. In boiling benzonitrile, the methylimine 9 decomposed.

Conclusions.- $1 \mathrm{H}, 6 \mathrm{H}-3 \mathrm{a} \lambda^{4}$-Thia-1,3,4-6-tetraazapentalenes 6 are not stable isolable species but may be higher-energy intermediates formed in low concentration in a reversible cycloaddition-elimination process in the reactions of 4 -alkyl-5-alkylimino- Δ^{2}-1,2,4-thiadiazolines 7 with nitriles $\mathrm{R}^{4} \mathrm{CN}$ which give the product 4 -alkyl-5-alkylimino- Δ^{2}-thiadiazolines 39 (Scheme 2). Possible pathways for this process are (A) a twostep sequence in which the cycloaddition and cycloreversion steps are concerted, or (B) a four-step sequence involving charged intermediates 40 and 41. It is also possible that the reactions of compound 7 with $\mathrm{R}^{4} \mathrm{CN}$ and its analogue 39 with $\mathrm{R}^{1} \mathrm{CN}$ do not involve the intermediate 6 but instead proceed through a transition state whose structure resembles structure 6.

We propose the following explanation for the failure of the methylimine 9 to react with nitriles. The methylimine 9 is likely to exist in the anti form 42 rather than the syn form $\mathbf{4 3}$ since repulsion between methyl groups at positions 4 and $\mathrm{N}-1^{\prime}$ is avoided in configuration 42. However, access to the lone pair of the imino nitrogen atom bv the nitrile is more stericallv
hindered in the anti form 42 than in the syn form 43. Also, a stabilised cyclic 10π-electron transition state, depicted by structure 44, can arise in the reactions of the syn form 43 (and in the reactions of the bases 24,26 and 34) but not in the reactions of the anti form 42. We have been unable to obtain crystals of the methylimine 9 suitable for a crystal-structure determination but it is noteworthy that the hydrogen atom on $\mathrm{N}-\mathrm{I}^{\prime}$ in the hydrochloride $\mathbf{1 7}$ is closer than is the methyl group on $\mathrm{N}-1^{\prime}$ to the methyl group at position $4 .{ }^{6}$

Experimental

M.p.s were determined with a Kofler hot-stage apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were determined at 200 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 50 MHz with a Bruker AC 200 spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts δ_{H} are given in ppm downfield from tetramethylsilane as internal reference. J Values are given in Hz . ${ }^{13} \mathrm{C}$ NMR chemical shifts δ_{C} are given in ppm relative to the central peak of the CDCl_{3} triplet taken as δ_{C} 77.00 or the central peak of the $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ multiplet taken as δ_{C} 39.9, and are proton-decoupled values. Extracts were dried over sodium sulfate. Solvents were removed from dried extracts and chromatographic eluates at reduced pressure with a rotary film evaporator. Ether denotes diethyl ether. The following anhydrous solvents were redistilled before use: acetone, DMPU, ethanol, methanol, propan-1-ol, pyridine. The following solvents were dried by stanuard procedures and were redistilled before use: cyclohexane, dichloromethane, ether, ethyl acetate, hexane. Benzene, toluene and xylene (mixture of isomers) were refluxed over sodium for 2 h , then distilled. DMF and N-methylpyrrolidinone were dried over powdered calcium hydride for several days and were then distilled at $\sim 20 \mathrm{mmHg}$. Acetonitrile was boiled over sodium hydride for 30 min , distilled, then boiled over phosphoric anhydride for 1 h , distilled and redistilled Triethvlamine was refluxed over
powdered calcium hydride and then distilled before use. Column chromatography was carried out with silica (85-200 mesh).

Synthesis of 3,4-Dimethyl-5-methylimino-4,5-dihydro-1,2,4thiadiazole 9.-Methyl fluorosulfonate ($1.94 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) was added to a solution of 5-chloro-3-methyl-1,2,4-thiadiazole $11^{5}(2.692 \mathrm{~g}, 20 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ and the resulting solution was kept for 24 h . The salt $16(4.53 \mathrm{~g}, 91 \%)$ which had crystallised was filtered off, washed with ether, dried, and added to $33 \%(\mathrm{w} / \mathrm{w})$ ethanolic methylamine ($12 \mathrm{~cm}^{3}$) cooled to $-50^{\circ} \mathrm{C}$. The temperature of the mixture was allowed to rise to room temperature, $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq}$. sodium hydroxide (40 cm^{3}) was added, and the resulting mixture was extracted with dichloromethane ($4 \times 100 \mathrm{~cm}^{3}$). The residue from the dried and evaporated extracts was dissolved in acetonitrile ($5 \mathrm{~cm}^{3}$) and $70 \%(\mathrm{w} / \mathrm{w})$ perchloric acid $\left(4 \mathrm{~cm}^{3}\right)$ was added followed by ether ($200 \mathrm{~cm}^{3}$). 3,4-Dimethyl-5-methylamino-1,2,4-thiadiazolium perchlorate 18 ($3.38 \mathrm{~g}, 69 \%$ from 11) was obtained as plates, m.p. 204-206 ${ }^{\circ} \mathrm{C}$ (Found: C, 24.6; H, 4.1; N, 17.35. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 24.65 ; \mathrm{H}, 4.14 ; \mathrm{N}, 17.25 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.48(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 3.06$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 3.57 (3 $\mathrm{H}, \mathrm{s}, 5-\mathrm{NMe})$ and $10.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 20.6$ (3Me), 37.5 ($4-\mathrm{Me}$), 37.9 ($5-\mathrm{NMe}$), 164.1 (C-3) and 181.3 (C-5).
$1 \mathrm{Mol} \mathrm{dm}^{-3} \mathrm{aq}$. sodium hydroxide ($20 \mathrm{~cm}^{3}$) was added to an aqueous solution of the foregoing salt (3.38 g in $20 \mathrm{~cm}^{3}$) and the mixture was extracted with dichloromethane $(4 \times 100$ cm^{3}). The residue from the dried and evaporated extracts was distilled at $125^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$ (heating block), giving $3,4-$ dimethyl-5-methylimino-4,5-dihydro-1,2,4-thiadiazole 9 (1.138 $\mathrm{g}, 39.8 \%$ from 11) as plates, m.p. $39-41^{\circ} \mathrm{C}$, which gradually change in air to a grey solid; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.21(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 2.91$ ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{NMe}$) and $3.22(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.4(3-\mathrm{Me})$, 32.4 (4-Me), 41.0 (5-NMe), 158.7 (C-3) and 164.6 (C-5); m/z $143.0513\left(\mathrm{M}^{+}\right)$.
Dissolution of the methylimine 9 (5 mmol) in ethanol saturated with hydrogen chloride ($5 \mathrm{~cm}^{3}$), followed by addition of ether, gave 3,4-dimethyl-5-methylamino-1,2,4-thiadiazolium chloride $17(840 \mathrm{mg}, 94 \%)$ as needles, m.p. $181-183{ }^{\circ} \mathrm{C}$; X-ray single-crystal structure determination given in ref. 6.

Reactions of 5-Amino-3-methyl-1,2,4-thiadiazole with 1,3Dibromopropane: Synthesis of 3-Methyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a pyrimidine 24.-(a) A solution of the thiadiazole $12^{3}(5.755 \mathrm{~g}, 50 \mathrm{mmol})$ and 1,3 -dibromopropane ($25.4 \mathrm{~cm}^{3}, 250 \mathrm{mmol}$) in DMF ($20 \mathrm{~cm}^{3}$) was heated at $130^{\circ} \mathrm{C}$ for 30 min . The solution was allowed to cool overnight at room temperature. The solid which had crystallised was filtered off, washed successively with ether-methanol ($3: 1 ; 4 \times 10 \mathrm{~cm}^{3}$) and ether ($30 \mathrm{~cm}^{3}$), and dried in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$. Recrystallisation of a sample of the solid from methanol (charcoal) gave 3-methyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a] pyrimidin-8ium bromide 20 as needles, m.p. $290-292^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 30.4 ; \mathrm{H}, 4.3 ; \mathrm{N}, 17.8 . \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{~S}$ requires C, 30.52; $\mathrm{H}, 4.27$; $\mathrm{N}, 17.79 \%)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.09\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 2.44(3 \mathrm{H}, \mathrm{s}$, 3-Me), $3.56\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 4.13\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$ and $10.75(1 \mathrm{H}, \mathrm{br}$, NH); $\delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 2.41$ (2 H , quint, $6-\mathrm{H}_{2}$), $2.64(3 \mathrm{H}, \mathrm{s}, 3-$ $\mathrm{Me}), 3.85\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right)$ and $4.35\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$.
The solid (2.872 g) was dissolved in water, $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq}$. sodium hydroxide ($20 \mathrm{~cm}^{3}$) was added, and the mixture was extracted with dichloromethane ($4 \times 150 \mathrm{~cm}^{3}$). Solvent was removed from the dried extracts and the solid residue was extracted with hot ether-cyclohexane ($9: 1 ; 4 \times 50 \mathrm{~cm}^{3}$). Solvent was distilled from the combined extracts until the residual volume was $\sim 50 \mathrm{~cm}^{3}$. 3-Methyl-6,7-dihydro- $5 \mathrm{H}-1,2,4-$ thiadiazolo[4,5-a] pyrimidine 24 (1.615 g) crystallised from the cooled solution as needles, m.p. $72-73^{\circ} \mathrm{C}$, sublimes at $125-$ $130^{\circ} \mathrm{C} / 0.7 \mathrm{mmHg}$ (Found: C, 46.3; H, 5.5; N, 27.0. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{~S}$
requires $\mathrm{C}, 46.4 ; \mathrm{H}, 5.84 ; \mathrm{N}, 27.07 \%$); $\lambda_{\text {max }}$ (cyclohexane) $/ \mathrm{nm}$ $269.5\left(8 / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3715\right)$, 253.5 (5250) and 233.5 (4470); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.92\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 2.20(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 3.49(2$ $\left.\mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right)$ and $3.80\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.81(2 \mathrm{H}$, quint, $\left.6-\mathrm{H}_{2}\right), 2.11(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 3.36\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right)$ and $3.77(2 \mathrm{H}, \mathrm{t}, 5-$ $\left.\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.0\left(\mathrm{CH}_{3}\right)$, $19.1(\mathrm{C}-6), 42.9$ and $44.7(\mathrm{C}-5$ and -7), 154.8 (C-3) and 162.4 (C-8a); $m / z 155.0508\left(\mathrm{M}^{+}\right)$.

The DMF and the excess of 1,3-dibromopropane were removed at reduced pressure from the reaction mother liquors. The residue was dissolved in methanol ($100 \mathrm{~cm}^{3}$), charcoal was added, and the mixture was boiled for 30 min , then filtered while hot, and solvent was removed from the filtrate. A solution of the residue in dichloromethane-acetone ($3: 1 ; 50 \mathrm{~cm}^{3}$) was chromatographed [silica ($38 \times 4.0 \mathrm{~cm}$)]. Elution gave the following fractions: (i) dichloromethane-acetone ($3: 1 ; 1000$ cm^{3}); (ii) dichloromethane-acetone ($3: 1 ; 1000 \mathrm{~cm}^{3}$) and (iii) methanol ($1500 \mathrm{~cm}^{3}$). Fraction (i) afforded 5-formamido-3-methyl-1,2,4-thiadiazole $13(2.625 \mathrm{~g}, 36.7 \%)$ as crystals, m.p. $195-197^{\circ} \mathrm{C}$ (sublimation $>189^{\circ} \mathrm{C}$) (Found: C, 33.3; H, 3.3; N, 29.3. $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{OS}$ requires $\mathrm{C}, 33.56 ; \mathrm{H}, 3.52 ; \mathrm{N}, 29.35 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.50(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 8.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ and 12.98 $(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 22.6\left(\mathrm{CH}_{3}\right), 165(\mathrm{CHO})$ and 171.6 and 177.3 (C-3 and -5); $m / z 143.0145\left(\mathrm{M}^{+}\right)$. Fraction (ii) gave back starting material 12 ($475 \mathrm{mg}, 8.3 \%$). The solid residue from fraction (iii) was a $10: 1$ mixture (${ }^{1} \mathrm{H}$ NMR) of dimethylammonium bromide and the salt $\mathbf{2 0}$. It was dissolved in water (40 cm^{3}), $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. sodium hydroxide ($1.5 \mathrm{~cm}^{3}$) was added, and the mixture was extracted with dichloromethane (4×30 cm^{3}). The combined dichloromethane extracts yielded another crop (189 mg) of the base 24 (total yield $1.804 \mathrm{~g}, 23.2 \%$). The aqueous solution was evaporated to dryness and the residue was extracted with acetonitrile to leave undissolved sodium bromide. Removal of acetonitrile from the extracts and recrystallisation of the residue from acetonitrile-acetone ($2: 1$) gave dimethylammonium bromide ($1.32 \mathrm{~g}, 21 \%$) as plates, m.p. and mixed m.p. with an authentic sample $133-135^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$ and $7.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 38.16(\mathrm{Me})$.
(b) A solution of 5-amino-3-methyl-1,2,4-thiadiazole 12 $\left(5.755 \mathrm{~g}, 50 \mathrm{mmol}\right.$) and 1,3-dibromopropane ($25.4 \mathrm{~cm}^{3}, 250$ $\mathrm{mmol})$ in N-methylpyrrolidinone ($40 \mathrm{~cm}^{3}$) was heated at $110^{\circ} \mathrm{C}$ for 3 h , then at $123^{\circ} \mathrm{C}$ for 2 h , and finally allowed to cool to room temperature overnight. The bromide 20 which had crystallised ($4.494 \mathrm{~g}, 38.1 \%$) was filtered off, washed with acetone ($3 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$. The salt was dissolved in water $\left(40 \mathrm{~cm}^{3}\right), 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. sodium hydroxide ($40 \mathrm{~cm}^{3}$) was added, and the mixture was extracted with dichloromethane ($4 \times 150 \mathrm{~cm}^{3}$). Solvent was removed from the dried extracts and the residue was extracted with boiling ether-cyclohexane ($9: 1 ; 4 \times 80 \mathrm{~cm}^{3}$). Solvent was distilled from the combined extracts until the residual volume was $\sim 50 \mathrm{~cm}^{3}$. 3-Methyl-6,7-dihydro-5 H -1,2,4-thiadiazolo[4,5a]pyrimidine 24 ($2.763 \mathrm{~g}, 35.6 \%$) crystallised from the cooled solution as crystals, identical [m.p. and mixed m.p. $70-72^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR spectrum $\left.\left(\mathrm{CDCl}_{3}\right)\right]$ with the product 24 of the preceding experiment.
(c) A solution of 5-amino-3-methyl-1,2,4-thiadiazole 12 $\left(5.755 \mathrm{~g}, 50 \mathrm{mmol}\right.$) and 1,3-dibromopropane ($25.4 \mathrm{~cm}^{3}, 250$ $\mathrm{mmol})$ in DMPU $\left(40 \mathrm{~cm}^{3}\right)$ was heated at $110^{\circ} \mathrm{C}$ for 3 h , then at $123^{\circ} \mathrm{C}$ for 2 h , and subsequently worked up according to the procedure of the preceding experiment (b). The base $24(2.675 \mathrm{~g}$, 34.5%) was obtained as crystals, identical [m.p. and mixed m.p. $70-72{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR spectrum $\left.\left(\mathrm{CDCl}_{3}\right)\right]$ with the product of the two preceding experiments.

Synthesis of 3-Phenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5a] pyrimidine 25.-A solution of 5-amino-3-phenyl-1,2,4-thiadiazole $14^{3}(1.773 \mathrm{~g}, 10 \mathrm{mmol})$ and 1,3 -dibromopropane $\left(10.2 \mathrm{~cm}^{3}\right.$,
$100 \mathrm{mmol})$ in DMF $\left(6 \mathrm{~cm}^{3}\right)$ was boiled for 1.5 h . The cream powder (1.626 g) which separated from the cooled solution was filtered off, washed with ether, and dried in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$. Recrystallisation of a sample from ethanol gave 3-phenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a]pyrimidin-8-ium bromide 21 as needles, m.p. $295-297^{\circ} \mathrm{C}$ (decomp.) (Found: C, 44.1; H, 4.0; $\mathrm{N}, 13.9 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{~S}$ requires $\mathrm{C}, 44.30 ; \mathrm{H}, 4.06 ; \mathrm{N}, 14.09 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.07\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 4.12$ ($2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}$), $7.68(5 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{Ph})$ and $8.43(1 \mathrm{H}, \mathrm{v} \mathrm{br}, \mathrm{NH})$.
$1 \mathrm{Mol} \mathrm{dm}^{-3}$ aq. sodium hydroxide ($15 \mathrm{~cm}^{3}$) was added to a suspension of the bromide (1.626 g) in water $\left(50 \mathrm{~cm}^{3}\right)$ and the mixture was extracted with dichloromethane ($5 \times 100 \mathrm{~cm}^{3}$). The dried and evaporated extracts gave a solid, which was extracted with boiling ether-cyclohexane $\left(9: 1 ; 2 \times 50 \mathrm{~cm}^{3}\right)$. Solvent was distilled from the combined extracts until crystallisation began. The cooled solution yielded 3-phenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a]pyrimidine 25 (378 mg, 17.4% yield from 14) as granules, m.p. $114-115^{\circ} \mathrm{C}$ (Found: C, 60.6; H, 4.9; N, 19.5. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.83 ; \mathrm{H}, 5.10$; N , 19.34%); $\lambda_{\text {max }}$ (cyclohexane) $/ \mathrm{nm} 312.5\left(\varepsilon \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 2340\right.$), 252.9 (6610) and $227(12880) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.82(2 \mathrm{H}$, quint, $\left.6-\mathrm{H}_{2}\right), 3.54\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.83\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$ and $7.51(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.5(\mathrm{C}-6), 45.3$ and $45.6(\mathrm{C}-5$ and -7$), 128.3,128.8$, 129.5 and 130.7 (4 C of Ph), 157.4 (C-3) and $162.8(\mathrm{C}-8 \mathrm{a}) ; m / z$ $217.0673\left(\mathrm{M}^{+}\right)$.

Synthesis of 6,7-Dihydro-5H-1,2,4-thiadiazolo[4,5-a]pyrimidine 26.-A solution 5-amino-1,2,4-thiadiazole 15^{3} (1.01 g, 10 mmol) and 1,3-dibromopropane ($10 \mathrm{~cm}^{3}, 98.4 \mathrm{mmol}$) in DMF ($2.5 \mathrm{~cm}^{3}$) was boiled for 15 min , then allowed to cool spontaneously to room temperature. The supernatant liquid was decanted off and the sticky brown residue was recrystallised from propan-l-ol to give an impure brown powder. Recrystallisation of a sample from ethanol (charcoal) and then from ethanol again gave 6,7-dihydro-5H-1,2,4-thiadiazolo[4,5a] pyrimidin-8-ium bromide 22 as straw-coloured needles, m.p. $242-245^{\circ} \mathrm{C}$ (decomp. $>230^{\circ} \mathrm{C}$) (Found: C, 26.9; H, 3.6; N, 18.7. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{~S}$ requires $\mathrm{C}, 27.04 ; \mathrm{H}, 3.63 ; \mathrm{N}, 18.92 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.10\left(2 \mathrm{H}\right.$, quint, 6- $\left.\mathrm{H}_{2}\right), 3.62\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 4.27$ ($2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}$), $8.62(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $10.68(1 \mathrm{H}, \mathrm{v} \mathrm{br}, \mathrm{N}-\mathrm{H})$.
$1 \mathrm{Mol} \mathrm{dm}{ }^{-3}$ aq. sodium hydroxide $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of the brown powder (1.61 g) in water $\left(25 \mathrm{~cm}^{3}\right)$ and the mixture was extracted with dichloromethane $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. Solvent was removed from the combined dried extracts with the minimum of heating, and the residual red solid was extracted with boiling ether-cyclohexane $\left(9: 1 ; 2 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were concentrated to $\sim 30 \mathrm{~cm}^{3}$ by gentle warming (water-bath). 6,7-Dihydro-5H-1,2,4-thiadiazolo[4,5a] pyrimidine $\mathbf{2 6}(310 \mathrm{mg}, 22 \%$ overall yield from 15$)$ crystallised as flakes, m.p. $90-92^{\circ} \mathrm{C}$ (decomp.) (Found: C, 42.2; H, 4.95; N, 29.6. $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 42.53 ; \mathrm{H}, 5.00 ; \mathrm{N}, 29.76 \%$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.90\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.54\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.89(2$ $\left.\mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$ and $7.32(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.4(\mathrm{C}-6), 43.0$ and 46.2 (C-5 and -7), 147.1 (C-3) and 161.3 (C-8a); m / z $141.0361\left(\mathrm{M}^{+}\right)$.

Synthesis of 3-Methyl-5,10-dihydrobenzo[e]-1,2,4-thiadiazolo [4,5-a $][1,3]$ diazepine 34 .- A solution of 5 -amino-3-methyl-1,2,4-thiadiazole $12(5.755 \mathrm{~g}, 50 \mathrm{mmol})$ and $1,2-$ bis(bromomethyl)benzene ($33 \mathrm{~g}, 125 \mathrm{mmol}$) in DMF ($100 \mathrm{~cm}^{3}$) was boiled for 30 min . Solvent was removed at reduced pressure from the cooled solution and the residue was dissolved in methanol-acetone $\left(1: 1 ; 300 \mathrm{~cm}^{3}\right)$. Charcoal was added and the mixture was boiled for 10 min , then filtered while hot. Solvent was removed from the filtrate, the residue was dissolved in acetone ($200 \mathrm{~cm}^{3}$), and the solution was set aside at room temperature for 6 h . 3-Methyl-5,10-dihydrobenzo[e]-1,2,4-thiadiazolo[4,5-a][1,3]diazepin-11-ium bromide 33 (7.6 g, 51\%)
crystallised as needles, m.p. $272-273{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 44.1 ; \mathrm{H}, 4.0$; $\mathrm{N}, 14.1 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{~S}$ requires $\mathrm{C}, 44.31 ; \mathrm{H}, 4.06 ; \mathrm{N}, 14.09 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.63(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.02\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 5.63(2 \mathrm{H}$, $\left.\mathrm{s}, 5-\mathrm{H}_{2}\right), 7.38-7.76(4 \mathrm{H}, \mathrm{m}$, benzo H$)$ and $11.5\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 12\right.$ Hz, NH).

The bromide $33(7.6 \mathrm{~g})$ was added to water $\left(200 \mathrm{~cm}^{3}\right)$ and 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ aq. sodium hydroxide ($50 \mathrm{~cm}^{3}$), and the mixture was extracted with dichloromethane $\left(400 \mathrm{~cm}^{3}+2 \times 100 \mathrm{~cm}^{3}\right)$. The residue from the dried and evaporated extracts was recrystallised from cyclohexane-dichloromethane (9:1). 3-Methyl-5,10-dihydrobenzo[e]-1,2,4-thiadiazolo[4,5-a $][1,3]$ diazepine 34 (4.90 $\mathrm{g}, 88.5 \%$; overall yield from $12,45 \%$) was obtained as crystals, m.p. 206-209 ${ }^{\circ} \mathrm{C}$ (Found: C, 60.9; H, 5.1; N, 19.4. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.83 ; \mathrm{H}, 5.10 ; \mathrm{N}, 19.34 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.29(3 \mathrm{H}, \mathrm{s}$, Me), $4.78\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 5.03\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}\right)$ and $7.24-7.38(4 \mathrm{H}$, m , benzo H$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.2(\mathrm{C}-3), 49.2$ and $50.7(\mathrm{C}-5$ and -10$)$, 127.7, $128.1,128.4$ and 132.9 (C-6-9), 132.7 and 139.9 (C-5a and -9a), 154.5 (C-3) and 163.3 (C-1la); $m / z 217.0675\left(\mathrm{M}^{+}\right)$.

The acetone mother liquors from which the bromide 33 had crystallised were evaporated and the residue was extracted with boiling hexane ($4 \times 200 \mathrm{~cm}^{3}$). 1,2-Bis(bromomethyl)benzene $(4.65 \mathrm{~g}, 14.3 \%)$ was recovered from the hexane extracts. The undissolved residue was triturated with acetone, filtered off, and recrystallised from acetonitrile, to give dimethylammonium bromide ($8.33 \mathrm{~g}, 66.1 \mathrm{mmol}$) as needles, m.p. and mixed m.p. with an authentic sample $133-135^{\circ} \mathrm{C}$.

Reactions of 3-Methyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5a]pyrimidine 24 with Nitriles.-With benzonitrile. A solution of the base $24(777 \mathrm{mg}, 5 \mathrm{mmol})$ in benzonitrile $\left(2.5 \mathrm{~cm}^{3}, 24.5\right.$ mmol) was boiled for 30 min , cooled, and chromatographed [silica $(41 \times 2.5 \mathrm{~cm})$]. Elution with ether gave eluates $\left(200 \mathrm{~cm}^{3}\right)$ containing benzonitrile. Further elution with ether-methanol (9:1) brought through homogeneous eluates ($1500 \mathrm{~cm}^{3}$) which yielded 3-phenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a]pyrimidine 25 ($594 \mathrm{mg}, 55 \%$), crystals from cyclohexane-benzene ($\sim 1: 1$), identical [m.p. and mixed m.p. $113-114.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$] with the product from the reaction of 5-amino-3-phenyl-1,2,4-thiadiazole 14 with 1,3-dibromopropane.

With p-nitrobenzonitrile. A solution of the base 24 ($776 \mathrm{mg}, 5$ mmol) and p-nitrobenzonitrile ($741 \mathrm{mg}, 5 \mathrm{mmol}$) in toluene (15 cm^{3}) was boiled for 4 h , cooled, and chromatographed [silica $(41 \times 2.7 \mathrm{~cm})$]. Elution with methanol-ether (3:2) gave, initially, eluates $\left(250 \mathrm{~cm}^{3}\right)$ containing p-nitrobenzonitrile, and subsequently homogeneous yellow eluates ($900 \mathrm{~cm}^{3}$) which yielded 3-p-nitrophenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5a]pyrimidine 27 ($835 \mathrm{mg}, 64 \%$), as yellow spars from cyclohexane-dichloromethane $(\sim 4: 1)$, m.p. $\quad 172-174^{\circ} \mathrm{C}$ (Found: C, $50.3 ; \mathrm{H}, 3.7 ; \mathrm{N}, 21.4 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ requires C , $50.37 ; \mathrm{H}, 3.84 ; \mathrm{N}, 21.36 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.90\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right)$, $3.59\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.91\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 7.76$ and $7.87(2 \mathrm{H}$, $2 \times o$-protons of $3-\mathrm{Ar}$) and 8.33 and $8.44(2 \mathrm{H}, 2 \times m$-protons of 3-Ar); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.75\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.41(2 \mathrm{H}, \mathrm{t}, 7-$ $\left.\mathrm{H}_{2}\right), 3.89\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 7.94$ and $8.05(2 \mathrm{H}, 2 \times o$-protons of $3-$ $\mathrm{Ar})$ and 8.35 and $8.46(2 \mathrm{H}, 2 \times m$-protons of $3-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 19.3 (C-6), 45.2 and 45.8 (C-5 and -7), 124.0 and 129.5 (C-2' and -3^{\prime}), 135.1 (C-1'), 149.1 (C-4'), 155.1 (C-3) and $162.0(\mathrm{C}-8 \mathrm{a}) ; m / z$ $262.0532\left(\mathrm{M}^{+}\right)$.

With 4-cyanopyridine. A solution of the base 24 ($777 \mathrm{mg}, 5$ mmol) and 4-cyanopyridine $(5.21 \mathrm{~g}, 50 \mathrm{mmol}$) in toluene (100 cm^{3}) was boiled for 30 h . Chromatography [silica (28×2.2 cm)] of the cooled solution gave the following eluates: (i) ethermethanol ($17: 8 ; 200 \mathrm{~cm}^{3}$) (ii) ether-methanol ($17: 8 ; 3150 \mathrm{~cm}^{3}$) (iii) methanol ($1500 \mathrm{~cm}^{3}$). The reddish oily residue from the combined homogeneous fractions (ii) and (iii) slowly solidified. The solid was extracted with ether-cyclohexane $(9: 1 ; 5 \times 50$ cm^{3}) and the combined extracts were concentrated by
distillation (water-bath) to $\sim 100 \mathrm{~cm}^{3}$. 3-(4'-Pyridyl)-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a] pyrimidine 28 (900 mg , 82.5%) was obtained as granules, m.p. $143-145^{\circ} \mathrm{C}$ (Found: C , 55.2; $\mathrm{H}, 4.7$; $\mathrm{N}, 26.0 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$ requires C, 55.02; $\mathrm{H}, 4.62 ; \mathrm{N}$, $25.67 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.86\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.55\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right)$, $3.88\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 7.44$ and $7.51\left(2 \mathrm{H}, 3^{\prime}-+5^{\prime}-\mathrm{H}\right)$ and 8.74 and $8.82\left(2 \mathrm{H}, 2^{\prime}-+6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.74\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right)$, $3.39\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.88\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 7.61$ and $7.69\left(2 \mathrm{H}, 3^{\prime}-+\right.$ $\left.5^{\prime}-\mathrm{H}\right)$ and 8.73 and $8.80\left(2 \mathrm{H}, 2^{\prime}-+6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 19.3(\mathrm{C}-$ 6), 45.2 and 45.6 (C-5 and -7), 122.2, 136.6 and 150.5 (C-2', -3^{\prime} and -4'), $154.9(\mathrm{C}-3)$ and $162.0(\mathrm{C}-8 \mathrm{a}) ; m / z 218.0619\left(\mathrm{M}^{+}\right)$.

With methoxyacetonitrile. A solution of the base 24 (776 mg , 5 mmol) and methoxyacetonitrile ($1.7 \mathrm{~cm}^{3}, 22.9 \mathrm{mmol}$) in toluene ($3 \mathrm{~cm}^{3}$) was boiled for 4 h . The cooled solution was chromatographed [silica ($40 \times 2.2 \mathrm{~cm}$)] with ether-methanol (4:1). The initial eluates ($250 \mathrm{~cm}^{3}$) were discarded and the succeeding eluates ($2500 \mathrm{~cm}^{3}$) yielded an oil, which was distilled at $150-160^{\circ} \mathrm{C} / 0.7 \mathrm{mmHg}$ (heating block). 3-Methoxymethyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a] pyrimidine 29 (573 mg , 62\%) was obtained as an oil (Found: C, 45.2; H, 6.2; N, 22.35. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$ requires C, $\left.45.38 ; \mathrm{H}, 5.98 ; \mathrm{N}, 22.68 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.88\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.52\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right)$, $3.95\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$ and $4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.76$ (2 H , quint, $6-\mathrm{H}_{2}$), $3.24\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right.$), 3.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.87 (2 $\left.\mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$ and $4.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.2(\mathrm{C}-6), 45.2$ and $45.3(\mathrm{C}-5$ and -7$), 58.5(\mathrm{Me}), 68.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 154.6(\mathrm{C}-3)$ and 162.4 (C-8a); $m / z 185.0612\left(\mathrm{M}^{+}\right)$.

With o-hydroxybenzonitrile. A solution of the base 24 (776 $\mathrm{mg}, 5 \mathrm{mmol}$) and o-hydroxybenzonitrile ($1.193 \mathrm{~g}, 10 \mathrm{mmol}$) in toluene ($36 \mathrm{~cm}^{3}$) was boiled (oil-bath) for 6.5 h while a white solid slowly crystallised. The hot mixture was filtered, the solid was washed with toluene ($25 \mathrm{~cm}^{3}$), and solvent was removed from the combined filtrates. Addition of methanol to the resulting oil gave more solid. Recrystallisation of the combined solids (680 mg) from ethanol gave 3-o-hydroxyphenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a] pyrimidine 30 (partly in the form of its zwitterion 37) ($623 \mathrm{mg}, 54 \%$) as spars, m.p. 228$229^{\circ} \mathrm{C}$ (decomp.) (Found: C, 56.8; H, 4.8; N, 18.3. $\mathrm{C}_{11} \mathrm{H}_{11^{-}}$ $\mathrm{N}_{3} \mathrm{OS}$ requires C, $\left.56.63 ; \mathrm{H}, 4.75 ; \mathrm{N}, 18.01 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2550 v br $(-\stackrel{+}{\mathrm{N}} \mathrm{H}=)$ and 1590 s br $(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 100^{\circ} \mathrm{C}\right.$; $\mathrm{Me}_{3} \mathrm{SiSiMe}_{3}$] $1.66\left(2 \mathrm{H}\right.$, quint, $6-\mathrm{H}_{2}$), $3.31\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.57$ $\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 5.70(1 \mathrm{H}, \mathrm{v}$ br, OH$)$ and $6.75-7.40(4 \mathrm{H}, \mathrm{m}$, ArH); $m / z 233.0633\left(\mathrm{M}^{+}\right)$.
With trideuterioacetonitrile. (a) A solution of the methyl base 24 ($776 \mathrm{mg}, 5 \mathrm{mmol}$) in $\mathrm{CD}_{3} \mathrm{CN}$ ($5 \mathrm{~cm}^{3}, 96 \mathrm{mmol}$) was boiled for 7 h . Solvent was removed, the residual solid was dissolved in a fresh portion ($5 \mathrm{~cm}^{3}$) of $\mathrm{CD}_{3} \mathrm{CN}$, and the resulting solution was boiled for 7 h . Solvent was removed and the residue was recrystallised from ether-cyclohexane (2:1). 3-Trideuterio-methyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a $]$ pyrimidine 31 ($668 \mathrm{mg}, 84 \%$) was obtained as needles, m.p. $72-74^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 45.15 ; \mathrm{N}, 27.0 . \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{D}_{3} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 45.54 ; \mathrm{N}, 26.55 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.91\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.49\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right)$ and 3.80 $\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 1.81(2 \mathrm{H}$, quint, 6-H2$), 3.36(2 \mathrm{H}, \mathrm{t}$, $\left.7-\mathrm{H}_{2}\right)$ and $3.77\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.1(\mathrm{C}-6), 43.1$ and 45.0 (C-5 and -7), $154.9(\mathrm{C}-3)$ and $162.5(\mathrm{C}-8 \mathrm{a})$ (the CD_{3} signal was not observed); $m / z 158.0695\left(\mathrm{M}^{+}\right)$.
(b) The base 24 ($38.8 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in $\mathrm{CD}_{3} \mathrm{CN}\left(0.5 \mathrm{~cm}^{3}, 9.6 \mathrm{mmol}\right)$ and the solution was kept at ambient temperature. The progress of the reaction was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, using the methyl signal of acetonitrile ($\delta_{\mathrm{H}} 1.90$) and the methyl base ($\delta_{\mathrm{H}} 2.10$) for monitoring. Conversion of the methyl base 24 into its trideuteriomethyl analogue 31 was 50% complete after 6.5 days and 80% complete after 17 days.

With fumaronitrile. (a) A solution of the base 24 ($776 \mathrm{mg}, 5$ mmol) and fumaronitrile ($781 \mathrm{mg}, 10 \mathrm{mmol}$) in toluene ($35 \mathrm{~cm}^{3}$) was kept in the dark at room temperature for 14 days while
olive-green rosettes of crystals formed. The yellow mother liquor was decanted, toluene ($15 \mathrm{~cm}^{3}$) was added, and the crystalline mass was crushed and filtered to give a homogeneous (TLC) yellow powder ($606 \mathrm{mg}, 79 \%$). Recrystallisation from ethanol or methanol was accompanied by some decomposition and extensive loss of material to give 1,2 -bis-(6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a pyrimidin-3-yl)ethene 38 as deep yellow needles, m.p. $194-198^{\circ} \mathrm{C}$ (gradual decomp. $>165^{\circ} \mathrm{C}$) (Found: C, 46.9; H, 4.65; N, 27.2. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}_{2}$ requires $\mathrm{C}, 47.04 ; \mathrm{H}, 4.61 ; \mathrm{N}, 27.43 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.93(2 \mathrm{H}$, quint, $6-\mathrm{H}_{2}$), $3.53\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.93\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right)$ and 7.19 ($1 \mathrm{H}, \mathrm{s},=\mathrm{CH}$).
(b) A solution of fumaronitrile ($1.95 \mathrm{~g}, 25 \mathrm{mmol}$) in toluene ($60 \mathrm{~cm}^{3}$) was added to a solution of the base $24(776 \mathrm{mg}, 5$ mmol) in toluene ($25 \mathrm{~cm}^{3}$). The resulting solution became yellow immediately and was kept at room temperature for 60 h , then was chromatographed [silica $(37 \times 2.2 \mathrm{~cm})$]. The following fractions were obtained: (i) toluene ($1000 \mathrm{~cm}^{3}$), discarded (ii) toluene-ether ($4: 1 ; 1000 \mathrm{~cm}^{3}$), discarded (iii) toluene-ether ($1: 1 ; 500 \mathrm{~cm}^{3}$), yellow (iv) ether ($300 \mathrm{~cm}^{3}$), yellow (v) ether-methanol ($19: 1 ; 2800 \mathrm{~cm}^{3}$), yellow (vi) methanol ($2000 \mathrm{~cm}^{3}$), yellow. The homogeneous fractions (iii)-(v) were combined and gave 3-[(E)-2-cyanovinyl]-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a]pyrimidine 32 ($621 \mathrm{mg}, 65 \%$) as a yellow powder which decomposes gradually on being heated and could not be obained analytically pure (TLC) owing to disproportionation into the ethene 38 and fumaronitrile; $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 1.93(2 \mathrm{H}$, quint, $\left.6-\mathrm{H}_{2}\right), 3.52\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.88\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 6.47(1 \mathrm{H}, \mathrm{d}$, J 16.1, CHCN) and $6.95(1 \mathrm{H}, \mathrm{d}, J$ 16.1, $\mathrm{CH}=\mathrm{CHCN})$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.77\left(2 \mathrm{H}\right.$, quint, $\left.6-\mathrm{H}_{2}\right), 3.35\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}_{2}\right), 3.94$ $\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{d}, J 16.1, \mathrm{CHCN})$ and $7.48(1 \mathrm{H}, \mathrm{d}$, J 16.1, $\mathrm{CH}=\mathrm{CHCN}$); m / z 192.0453. Fraction (vi) yielded the ethene 38 ($163 \mathrm{mg}, 11 \%$).
(c) The base 24 ($502 \mathrm{mg}, 3.23 \mathrm{mmol}$) was added to a solution of the nitrile $32(621 \mathrm{mg}, 3.23 \mathrm{mmol})$ in toluene ($25 \mathrm{~cm}^{3}$) and the resulting solution was kept at room temperature for 10 days. The precipitated yellow solid (343 mg) was filtered off, and the filtrate was kept at room temperature for a further 10 days to give more yellow solid (215 mg). The combined yellow solids ($558 \mathrm{mg}, 56 \%$) were identical (m.p., mixed m.p., ${ }^{1} \mathrm{H}$ NMR spectrum) with the ethene 38 prepared in the preceding experiment (a).

With benzoylacetonitrile. Filtered solutions of the base 24 ($776 \mathrm{mg}, 5 \mathrm{mmol}$) in toluene ($10 \mathrm{~cm}^{3}$) and benzoylacetonitrile ($727 \mathrm{mg}, 5 \mathrm{mmol}$) in toluene ($7 \mathrm{~cm}^{3}$) were mixed. Crystals formed rapidly and the mixture was kept at room temperature for 48 h . The solid was filtered off, washed with toluene followed by ether, and dried in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$. The mother liquor contained only starting materials (TLC). 3-Methyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a $]$ pyrimidin-8-ium benzoylacetonitrile enolate $23(1.255 \mathrm{~g}, 84 \%)$ was thereby obtained as rhombs, m.p. $90.5-92.5^{\circ} \mathrm{C}$ (Found: C, 60.0; H, 5.4; N, 18.9. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OS}$ requires C , $59.98 ; \mathrm{H}, 5.37$; $\mathrm{N}, 18.65 \%$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2550 \mathrm{v}$ br ($=\stackrel{+}{\mathrm{N}} \mathrm{H}-$), 2150s (conj. $\mathrm{C} \equiv \mathrm{N}$) and 1604 br s ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$). The ${ }^{1} \mathrm{H}$ NMR specrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ consisted of the superimposed spectra of the base and benzoylacetonitrile.

Reaction of 3-Trideuteriomethyl-6,7-dihydro-5H-1,2,4-thia-diazolo[4,5-a pyrimidine 31 with Acetonitrile.-The methyl base $24(776 \mathrm{mg}, 5 \mathrm{mmol})$ was converted into the trideuteriomethyl base 31 as previously described, and the entire product 31, whose ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$ and $\mathrm{CD}_{3} \mathrm{CN}$) showed no ring-methyl signal, was dissolved in acetonitrile ($5 \mathrm{~cm}^{3}, 95.7 \mathrm{mmol}$). The solution was boiled for 7 h , solvent was removed, the solid residue was redissolved in a fresh portion of acetonitrile ($5 \mathrm{~cm}^{3}$), and the resulting solution was boiled for 7 h . Solvent was removed and the residue was
recrystallised from ether-cyclohexane, to give 3-methyl-6,7-dihydro- $5 H-1,2,4$-thiadiazolo $[4,5-a$]pyrimidine 24 (671 mg , 86.5%) as spars, identical [m.p. and mixed m.p.; ${ }^{1} \mathrm{H}$ NMR spectrum $\left.\left(\mathrm{CDCl}_{3}\right)\right]$ with an authentic sample.

Reaction of 6,7-Dihydro-5H-1,2,4-thiadiazolo[4,5-a] pyrimidine $\mathbf{2 6}$ with Nitriles.-With acetonitrile. A solution of the base $26(710 \mathrm{mg}, 5.03 \mathrm{mmol})$ in acetonitrile ($25 \mathrm{~cm}^{3}, 479 \mathrm{mmol}$) was boiled for 14 h , cooled, and solvent was removed. Sublimation of the residue at $140^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ and recrystallisation of the sublimate from ether-cyclohexane gave 3-methyl-6,7-dihydro$5 H-1,2,4$-thiadiazolo[4,5-a]pyrimidine 24 ($359 \mathrm{mg}, 46 \%$) as needles, identical [m.p. and mixed m.p.; ${ }^{1} \mathrm{H}$ NMR spectrum $\left.\left(\mathrm{CDCl}_{3}\right)\right]$ with an authentic sample.

With benzonitrile. A solution of the base $26(707 \mathrm{mg}, 5 \mathrm{mmol})$ and benzonitrile ($5.1 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) was boiled for 8 h , cooled, and chromatographed [silica (43×2.5 $\mathrm{cm})$]. The initial eluates [ether-methanol $\left.\left(19: 1 ; 700 \mathrm{~cm}^{3}\right)\right]$ were discarded and the succeeding eluates [ether-methanol (19:1; $1000 \mathrm{~cm}^{3}$); methanol ($1000 \mathrm{~cm}^{3}$)] were combined to give a solid, which was recrystallised from benzene-cyclohexane (1:1). 3-Phenyl-6,7-dihydro-5 H -1,2,4-thiadiazolo[4,5-a]pyrimidine 25 ($640 \mathrm{mg}, 59 \%$) was obtained as granules, identical [m.p., mixed m.p.; ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$] with authentic sample.

Reaction of 3-Methyl-5,10-dihydrobenzo[e]-1,2,4-thiadi-azolo[4,5-a $][1,3]$ diazepine 34 with Nitriles.-With trideuterioacetonitrile. (a) A solution of the diazepine $34(217 \mathrm{mg}, 1$ $\mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}\left(2 \mathrm{~cm}^{3}, 19.2 \mathrm{mmol}\right)$ was refluxed for 6 h . More $\mathrm{CD}_{3} \mathrm{CN}\left(3 \mathrm{~cm}^{3}\right)$ was added and the mixture was refluxed for another 20 h . Removal of solvent gave prisms (200 mg), m.p. 209- $210^{\circ} \mathrm{C}$, whose ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$; measurement of intensities of $3-\mathrm{Me}, 5-\mathrm{H}_{2}$ and $10-\mathrm{H}_{2}$ signals) showed it to be a 1:3 mixture of the deuteriated base 35 and the starting base 34.
(b) A solution of the diazepine $34(217 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}\left(5 \mathrm{~cm}^{3}, 96 \mathrm{mmol}\right)$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left(2.5 \mathrm{~cm}^{3}\right)$ was refluxed for 24 h (solution temperature $92^{\circ} \mathrm{C}$; vapour temperature $80^{\circ} \mathrm{C}$). Removal of solvent gave crystals, m.p. $209-210^{\circ} \mathrm{C}$, which was a mixture of the deuteriated base 35
(77%) and the base $34(23 \%)$ [${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$: 35:34, 7:2; mass spectrum: \mathbf{M}^{+}(35): \mathbf{M}^{+}(34), 6.7:2].

With fumaronitrile. A solution of the diazepine $\mathbf{3 4}(\mathbf{4 3 5} \mathrm{mg}, 2$ mmol) and fumaronitrile ($781 \mathrm{mg}, 10 \mathrm{mmol}$) in toluene ($15 \mathrm{~cm}^{3}$) was refluxed for 3 h . Solvent was removed and the residue was chromatographed [silica ($20 \times 2.5 \mathrm{~cm}$)]. The initial eluates [dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$] were discarded and the succeeding eluates [dichloromethane-acetone (4:1)] afforded 3-[(E)-2-cyanovinyl]-5,10-dihydrobenzo[e]-1,2,4-thiadiazolo[4,5-a]-
[1,3]diazepine $36(388 \mathrm{mg}, 76 \%)$, bright yellow crystals from dichloromethane-ether, m.p. $189-191^{\circ} \mathrm{C}$ (decomp.) (Found: C, 61.3; $\mathrm{H}, 3.8 ; \mathrm{N}, 22.1 . \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 61.40 ; \mathrm{H}, 3.96 ; \mathrm{N}$, $22.03 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.79\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}\right)$, 6.45 ($1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{CHCN}$), 7.10 ($1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{CH}=\mathrm{CHCN}$) and $7.26-7.41(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 49.3$ and $51.0(\mathrm{C}-5$ and $-10), 107.3(\mathrm{CHCN}), 116.3(\mathrm{CN}), 128.0,128.4,128.6,129.9$ and 133.9 (C-6-9 and CH=CHCN), 132.1 and 139.8 (C-5a and -9 a), 150.5 (C-3) and 161.7 (C-11a).

Acknowledgements

We thank the Foundation for Research Development, The University of Witwatersrand, and the Science and Engineering Council (UK) for financial support.

References

1 Part 30, D. H. Reid, B. G. Rose and M. G. Jackson, Heteroatom Chemistry, in the press.
2 J. A. Mitchell and D. H. Reid, J. Chem. Soc., Perkin Trans 1, 1982, 499.

3 J. Goerdeler, Chem. Ber., 1954, 87, 57.
4 J. Goerdeler, A. Huppertz and K. Wember, Chem. Ber., 1954, 87, 68. 5 J. Goerdeler, Chem. Ber., 1957, 90, 182.
6 L.-L. Lai, F.-L. Liao, D. H. Reid and S.-L. Wang, Acta Crystallogr., Sect. C, 1992, 48, 1456.

Paper 3/01826A
Received 30th March 1993
Accepted 14th April 1993

